
• Instance = Root Folder for the scattered database (Zarah is Hebrew for 
Scattered).

• Table = Sub-folder. In standard DB terms the table can be said to contain any 
number of rows, each row is accessed by its key.

• Key = A single JSON file that contains all the data associated with the key, 
which is stored as columns, each column having a value.

• Column = The name for the name/value pair to be stored or retrieved.
• Value = A string value, which can be anything from null, a number, a set of 

typed characters or even a full JSON blob.



Instance

Instance
The root folder for the scattered database.

The instance contains tables, which are just file folders named the same as the 
table. The instance is also where the instance backup it stored. When a backup is 
done, a .Zip file will exist in the instance folder and will contain all the folders and 
files located in any folders that exist within the instance.



Table

Table
Tables are just file folders with the same name as the table.

The tables help to separate different types of data. Each table has a single data 
element that functions as the key to access the data contained in the table. The 
name of the table typically defines type of data contained in the table. Every key 
stored in the table should be something that directly relates to the name of the 
table.



Key

In the above example there are two tables, “Place” and “Person”. Place has one key 
for “Peru” and Person has three keys, “Mike Reed”, “Michael Thomas” and “Sarah 
Reed”.

Key
• Keys are stored in JSON files. The name of each file matches the key, or is very 

close to the key.



Scattering

Depending on how much data is expected to be stored, and how unique the keys 
will be, different levels of scattering can be set. The example above, we use a 
“MaxDepth” of three. The default depth for a ZarahDB is five levels of scattering.

Note that each file resides under folders that spell out the key. “Peru” for instance 
is stored under the “P”, “E”, “R” folders. Both “Michael Thomas” and “Mike Reed” 
are stored under the “M” and then the “I” folders, but because they are spelled 
differently, “Mike Reed” is next under the “K” folder, while “Michael Thomas” is 
stored in “C” as it’s final folder.

Scattering
• Keys are scattered so that only a few reside in any one folder.



The Key Files

Anything we store about Peru will be stored in the “Peru.json” file. Anything about 
Mike Reed will be stored in the “Mike Reed.json” file.

Let’s look inside a key file and see how the data is stored.

Key Files
• Each key file contains JSON. Typically a single key is stored in each key file.



Mike Reed.json

Under each key we find columns. In the above example we are only storing one 
column. The column is named “First Name” and the value is “Mike”. 

If we ever update this value, the previous value gets stored before the value is 
updated, so we always know if a value has changed and we know the value prior 
to the last change. 

We also know when the value was last updated. This big number equals the 
number of ticks that have elapsed since 12:00:00 midnight, January 1, 0001. 
There are 10,000 ticks in a millisecond and 1000 milliseconds per second. So a 
tick is a really small unit of time! 10,000,000 ticks per second!!!

Each JSON File
• Each key file can contain any number of keys, but typically only a single key.



Mike Reed.json

As columns are added, they simply get added to the structure. There are no 
reasonable limits to the number of columns that can be added to a single key.

Values are just blob fields. They can contain simple data or full documents, 
images or any type of data. Typically the limit is 8K of data for each value, but this 
can be extended to any reasonable size.

Note that in the example above, Mike has changed his name, his prior last name 
was “O’ffill”.

Additional Columns
• Any reasonable number of columns can be stored.



 Transactions

 Indexes

 Map Reduce

 Scaling

 Impendence Mismatch

 Object Database

 Disk Subsystems (Physical Scattering -
Sharding)

 NoSQL

 Microsoft .NET based – C#

 Non-relational

 Open-source

 Cluster Friendly

 Schema-less

 Data Models

 Key/Value = Here is a key, get me the value. 

 Document = Stores a full document per key. Here 
is a Key, get me a JSON blob.

 Return/Write/Update portions of a document

 No Schema – just return all the values for a key

 Implicit Schema

 Aggregate-Oriented Database

 Column-Family Database

 Best used when there is a unique key

 Worst used when there are two or more keys, 
or aggregates are needed.

 Consistency

 ACID – BASE – Transactions – Atomic Updates

 Aggregates are transaction boundaries, so 
you get atomic updates automatically.

 Write/Write conflict – use the updated ticks as 
part of the update. Offline-lock. Version 
stamp (time).

 AWS EFS – Availability, resilience, cross zone 
updates.

 Consistency vs. Availability

 Safety vs. Liveness

 Two drivers

 Large amounts of data – more than one server 
can handle… use scale out vs. clusters.

 Easier Development, read and write at the domain 
level, serialize a full complex object and read and 
write the json directly.

 Not a graph database

 Agile Analytics – Ken Collier

 Polygot Persistence – Storing to multiple DBs 
for different data, or for slicing the same data 
multiple ways.

 Eventual Consistency

 Nothing to install. The OS is the DB! – But 
there is a NuGet package making it easy to 
add to a .Net project, a Zip file to install a web 
service, and a .MSI package to install a stand 
alone ZarahDB service which exposes a 
Swagger UI and RestFul API.


